Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A probability theoretic approach to drifting data in continuous time domains (1912.01969v1)

Published 4 Dec 2019 in cs.LG and stat.ML

Abstract: The notion of drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time. Albeit many attempts were made to deal with drift, formal notions of drift are application-dependent and formulated in various degrees of abstraction and mathematical coherence. In this contribution, we provide a probability theoretical framework, that allows a formalization of drift in continuous time, which subsumes popular notions of drift. In particular, it sheds some light on common practice such as change-point detection or machine learning methodologies in the presence of drift. It gives rise to a new characterization of drift in terms of stochastic dependency between data and time. This particularly intuitive formalization enables us to design a new, efficient drift detection method. Further, it induces a technology, to decompose observed data into a drifting and a non-drifting part.

Citations (6)

Summary

We haven't generated a summary for this paper yet.