Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Drifting Features (2012.00499v1)

Published 1 Dec 2020 in cs.LG and stat.ML

Abstract: The notion of concept drift refers to the phenomenon that the distribution, which is underlying the observed data, changes over time. We are interested in an identification of those features, that are most relevant for the observed drift. We distinguish between drift inducing features, for which the observed feature drift cannot be explained by any other feature, and faithfully drifting features, which correlate with the present drift of other features. This notion gives rise to minimal subsets of the feature space, which are able to characterize the observed drift as a whole. We relate this problem to the problems of feature selection and feature relevance learning, which allows us to derive a detection algorithm. We demonstrate its usefulness on different benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fabian Hinder (26 papers)
  2. Jonathan Jakob (4 papers)
  3. Barbara Hammer (125 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.