Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical radius inequalities of bounded linear operators and $(α,β)$-normal operators (2301.03877v1)

Published 10 Jan 2023 in math.FA

Abstract: We obtain various upper bounds for the numerical radius $w(T)$ of a bounded linear operator $T$ defined on a complex Hilbert space $\mathcal{H}$, by developing the upper bounds for the $\alpha$-norm of $T$, which is defined as $|T|{\alpha}= \sup \left{ \sqrt{\alpha |\langle Tx,x \rangle|2+ (1-\alpha)|Tx|2 } : x\in \mathcal{H}, |x|=1 \right}$ for $ 0\leq \alpha \leq 1 $. Further, we prove that \begin{eqnarray*} w(T) &\leq & \sqrt{\left( \min{\alpha \in [0,1]}\left| \alpha |T|+(1-\alpha)|T*| \right| \right) |T|} \,\,\,\, \leq \,\, \,\, |T|. \end{eqnarray*} For $0\leq \alpha \leq 1 \leq \beta,$ the operator $T$ is called $(\alpha,\beta)$-normal if $\alpha2 T*T\leq TT*\leq \beta2 T*T$ holds. Note that every invertible operator is an $(\alpha,\beta)$-normal operator for suitable values of $\alpha$ and $\beta$. Among other lower bound for the numerical radius of an $(\alpha,\beta)$-normal operator $T$, we show that \begin{eqnarray*} w(T) &\geq & \sqrt{\max \left{ 1+\alpha2, 1+\frac{1}{\beta2}\right} \frac{|T|2}{4}+ \frac {\left| |\Re(T)|2-|\Im(T)|2 \right|}2} &\geq & \max \left{ \sqrt{1+\alpha2}, \sqrt{1+\frac{1}{\beta2}} \right} \frac{|T|}{2} & > & \frac{|T|}2, \end{eqnarray*} where $\Re(T)$ and $\Im(T)$ are the real part and imaginary part of $T$, respectively.

Summary

We haven't generated a summary for this paper yet.