Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Invisible Hyperlinks in Physical Photographs Based on 3D Rendering Attacks (1912.01224v1)

Published 3 Dec 2019 in eess.IV and cs.CV

Abstract: In the era of multimedia and Internet, people are eager to obtain information from offline to online. Quick Response (QR) codes and digital watermarks help us access information quickly. However, QR codes look ugly and invisible watermarks can be easily broken in physical photographs. Therefore, this paper proposes a novel method to embed hyperlinks into natural images, making the hyperlinks invisible for human eyes but detectable for mobile devices. Our method is an end-to-end neural network with an encoder to hide information and a decoder to recover information. From original images to physical photographs, camera imaging process will introduce a series of distortion such as noise, blur, and light. To train a robust decoder against the physical distortion from the real world, a distortion network based on 3D rendering is inserted between the encoder and the decoder to simulate the camera imaging process. Besides, in order to maintain the visual attraction of the image with hyperlinks, we propose a loss function based on just noticeable difference (JND) to supervise the training of encoder. Experimental results show that our approach outperforms the previous method in both simulated and real situations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.