Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aparecium: Revealing Secrets from Physical Photographs (2308.12141v1)

Published 23 Aug 2023 in cs.MM

Abstract: Watermarking is a crucial tool for safeguarding copyrights and can serve as a more aesthetically pleasing alternative to QR codes. In recent years, watermarking methods based on deep learning have proved superior robustness against complex physical distortions than traditional watermarking methods. However, they have certain limitations that render them less effective in practice. For instance, current solutions necessitate physical photographs to be rectangular for accurate localization, cannot handle physical bending or folding, and require the hidden area to be completely captured at a close distance and small angle. To overcome these challenges, we propose a novel deep watermarking framework dubbed \textit{Aparecium}. Specifically, we preprocess secrets (i.e., watermarks) into a pattern and then embed it into the cover image, which is symmetrical to the final decoding-then-extracting process. To capture the watermarked region from complex physical scenarios, a locator is also introduced. Besides, we adopt a three-stage training strategy for training convergence. Extensive experiments demonstrate that \textit{Aparecium} is not only robust against different digital distortions, but also can resist various physical distortions, such as screen-shooting and printing-shooting, even in severe cases including different shapes, curvature, folding, incompleteness, long distances, and big angles while maintaining high visual quality. Furthermore, some ablation studies are also conducted to verify our design.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhe Lei (2 papers)
  2. Jie Zhang (847 papers)
  3. Jingtao Li (24 papers)
  4. Weiming Zhang (135 papers)
  5. Nenghai Yu (173 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.