Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Class-Conditional VAE-GAN for Local-Ancestry Simulation (1911.13220v1)

Published 27 Nov 2019 in q-bio.GN, cs.LG, and stat.ML

Abstract: Local ancestry inference (LAI) allows identification of the ancestry of all chromosomal segments in admixed individuals, and it is a critical step in the analysis of human genomes with applications from pharmacogenomics and precision medicine to genome-wide association studies. In recent years, many LAI techniques have been developed in both industry and academic research. However, these methods require large training data sets of human genomic sequences from the ancestries of interest. Such reference data sets are usually limited, proprietary, protected by privacy restrictions, or otherwise not accessible to the public. Techniques to generate training samples that resemble real haploid sequences from ancestries of interest can be useful tools in such scenarios, since a generalized model can often be shared, but the unique human sample sequences cannot. In this work we present a class-conditional VAE-GAN to generate new human genomic sequences that can be used to train local ancestry inference (LAI) algorithms. We evaluate the quality of our generated data by comparing the performance of a state-of-the-art LAI method when trained with generated versus real data.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube