The symplectic geometry of higher Auslander algebras: Symmetric products of disks (1911.11719v2)
Abstract: We show that the perfect derived categories of Iyama's $d$-dimensional Auslander algebras of type $\mathbb{A}$ are equivalent to the partially wrapped Fukaya categories of the $d$-fold symmetric product of the $2$-dimensional unit disk with finitely many stops on its boundary. Furthermore, we observe that Koszul duality provides an equivalence between the partially wrapped Fukaya categories associated to the $d$-fold symmetric product of the disk and those of its $(n-d)$-fold symmetric product; this observation leads to a symplectic proof of a theorem of Beckert concerning the derived Morita equivalence between the corresponding higher Auslander algebras of type $\mathbb{A}$. As a byproduct of our results, we deduce that the partially wrapped Fukaya categories associated to the $d$-fold symmetric product of the disk organise into a paracyclic object equivalent to the $d$-dimensional Waldhausen $\operatorname{S}$-construction, a simplicial space whose geometric realisation provides the $d$-fold delooping of the connective algebraic $K$-theory space of the ring of coefficients.