Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pyramid Vector Quantization and Bit Level Sparsity in Weights for Efficient Neural Networks Inference (1911.10636v1)

Published 24 Nov 2019 in cs.CV

Abstract: This paper discusses three basic blocks for the inference of convolutional neural networks (CNNs). Pyramid Vector Quantization (PVQ) is discussed as an effective quantizer for CNNs weights resulting in highly sparse and compressible networks. Properties of PVQ are exploited for the elimination of multipliers during inference while maintaining high performance. The result is then extended to any other quantized weights. The Tiny Yolo v3 CNN is used to compare such basic blocks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.