Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Quantization for Machine Vision (1603.09037v1)

Published 30 Mar 2016 in cs.CV

Abstract: This paper shows how to reduce the computational cost for a variety of common machine vision tasks by operating directly in the compressed domain, particularly in the context of hardware acceleration. Pyramid Vector Quantization (PVQ) is the compression technique of choice and its properties are exploited to simplify Support Vector Machines (SVM), Convolutional Neural Networks(CNNs), Histogram of Oriented Gradients (HOG) features, interest points matching and other algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.