Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linear filtering with fractional noises: large time and small noise asymptotics (1911.10062v2)

Published 22 Nov 2019 in math.PR and math.OC

Abstract: The classical state-space approach to optimal estimation of stochastic processes is efficient when the driving noises are generated by martingales. In particular, the weight function of the optimal linear filter, which solves a complicated operator equation in general, simplifies to the Riccati ordinary differential equation in the martingale case. This reduction lies in the foundations of the Kalman-Bucy approach to linear optimal filtering. In this paper we consider a basic Kalman-Bucy model with noises, generated by independent fractional Brownian motions, and develop a new method of asymptotic analysis of the integro-differential filtering equation arising in this case. We establish existence of the steady-state error limit and find its asymptotic scaling in the high signal-to-noise regime. Closed form expressions are derived in a number of important cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube