Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Localize Sound Sources in Visual Scenes: Analysis and Applications (1911.09649v1)

Published 20 Nov 2019 in cs.CV

Abstract: Visual events are usually accompanied by sounds in our daily lives. However, can the machines learn to correlate the visual scene and sound, as well as localize the sound source only by observing them like humans? To investigate its empirical learnability, in this work we first present a novel unsupervised algorithm to address the problem of localizing sound sources in visual scenes. In order to achieve this goal, a two-stream network structure which handles each modality with attention mechanism is developed for sound source localization. The network naturally reveals the localized response in the scene without human annotation. In addition, a new sound source dataset is developed for performance evaluation. Nevertheless, our empirical evaluation shows that the unsupervised method generates false conclusions in some cases. Thereby, we show that this false conclusion cannot be fixed without human prior knowledge due to the well-known correlation and causality mismatch misconception. To fix this issue, we extend our network to the supervised and semi-supervised network settings via a simple modification due to the general architecture of our two-stream network. We show that the false conclusions can be effectively corrected even with a small amount of supervision, i.e., semi-supervised setup. Furthermore, we present the versatility of the learned audio and visual embeddings on the cross-modal content alignment and we extend this proposed algorithm to a new application, sound saliency based automatic camera view panning in 360-degree{\deg} videos.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Arda Senocak (18 papers)
  2. Tae-Hyun Oh (75 papers)
  3. Junsik Kim (36 papers)
  4. Ming-Hsuan Yang (377 papers)
  5. In So Kweon (156 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com