Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Justification of the discrete nonlinear Schrödinger equation from a parametrically driven damped nonlinear Klein-Gordon equation and numerical comparisons (1911.08514v1)

Published 16 Nov 2019 in nlin.PS, math-ph, and math.MP

Abstract: We consider a damped, parametrically driven discrete nonlinear Klein-Gordon equation, that models coupled pendula and micromechanical arrays, among others. To study the equation, one usually uses a small-amplitude wave ansatz, that reduces the equation into a discrete nonlinear Schr\"odinger equation with damping and parametric drive. Here, we justify the approximation by looking for the error bound with the method of energy estimates. Furthermore, we prove the local and global existence of {solutions to the discrete nonlinear} Schr\"odinger equation. To illustrate the main results, we consider numerical simulations showing the dynamics of errors made by the discrete nonlinear equation. We consider two types of initial conditions, with one of them being a discrete soliton of the nonlinear Schr\"odinger equation, that is expectedly approximate discrete breathers of the nonlinear Klein-Gordon equation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.