Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Bayesian Learning of Occupancy Grids (1911.07915v3)

Published 18 Nov 2019 in eess.SP

Abstract: Occupancy grids encode for hot spots on a map that is represented by a two dimensional grid of disjoint cells. The problem is to recursively update the probability that each cell in the grid is occupied, based on a sequence of sensor measurements from a moving platform. In this paper, we provide a new Bayesian framework for generating these probabilities that does not assume statistical independence between the occupancy state of grid cells. This approach is made analytically tractable through the use of binary asymmetric channel models that capture the errors associated with observing the occupancy state of a grid cell. Binary-valued measurement vectors are the thresholded output of a sensor in a radar, sonar, or other sensory system. We compare the performance of the proposed framework to that of the classical formulation for occupancy grids. The results show that the proposed framework identifies occupancy grids with lower false alarm and miss detection rates, and requires fewer observations of the surrounding area, to generate an accurate estimate of occupancy probabilities when compared to conventional formulations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.