Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Circular Wilson loops in defect ${\cal N}$=4 SYM: phase transitions, double-scaling limits and OPE expansion (1911.07792v1)

Published 18 Nov 2019 in hep-th

Abstract: We consider circular Wilson loops in a defect version of $\mathcal{N}=4$ super-Yang-Mills theory which is dual to the D3-D5 brane system with $k$ units of flux. When the loops are parallel to the defect, we can construct both BPS and non-BPS operators, depending on the orientation of the scalar couplings in the R-symmetry directions. At strong 't Hooft coupling we observe, in the non supersymmetric case, a Gross-Ooguri-like phase transition in the dual gravitational theory: the familiar disk solution dominates, as expected, when the operator is far from the defect while a cylindrical string worldsheet, connecting the boundary loop with the probe D5-brane, is favourite below a certain distance (or equivalently for large radii of the circles). In the BPS case, instead, the cylindrical solution does not exist for any choice of the physical parameters, suggesting that the exchange of light supergravity modes always saturate the expectation value at strong coupling. We study the double-scaling limit for large $k$ and large 't Hooft coupling, finding full consistency in the non-BPS case between the string solution and the one-loop perturbative result. Finally we discuss, in the BPS case, the failure of the double-scaling limit and the OPE expansion of the Wilson loop, finding consistency with the known results for the one-point functions of scalar composite operators.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.