On one-stage recovery for $ΣΔ$-quantized compressed sensing (1911.07525v1)
Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representations. When such a signal is acquired according to the principles of CS, the measurements still take on values in the continuum. In today's "digital" world, a subsequent quantization step, where these measurements are replaced with elements from a finite set is crucial. We focus on one of the approaches that yield efficient quantizers for CS: $\Sigma \Delta$ quantization, followed by a one-stage tractable reconstruction method, which was developed by Saab et al. with theoretical error guarantees in the case of sub-Gaussian matrices. We propose two alternative approaches that extend this result to a wider class of measurement matrices including (certain unitary transforms of) partial bounded orthonormal systems and deterministic constructions based on chirp sensing matrices.