Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On one-stage recovery for $ΣΔ$-quantized compressed sensing (1911.07525v1)

Published 18 Nov 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: Compressed sensing (CS) is a signal acquisition paradigm to simultaneously acquire and reduce dimension of signals that admit sparse representations. When such a signal is acquired according to the principles of CS, the measurements still take on values in the continuum. In today's "digital" world, a subsequent quantization step, where these measurements are replaced with elements from a finite set is crucial. We focus on one of the approaches that yield efficient quantizers for CS: $\Sigma \Delta$ quantization, followed by a one-stage tractable reconstruction method, which was developed by Saab et al. with theoretical error guarantees in the case of sub-Gaussian matrices. We propose two alternative approaches that extend this result to a wider class of measurement matrices including (certain unitary transforms of) partial bounded orthonormal systems and deterministic constructions based on chirp sensing matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.