Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carleson's $\varepsilon^2$ conjecture in higher dimensions (2310.12316v3)

Published 18 Oct 2023 in math.CA and math.AP

Abstract: In this paper we prove a higher dimensional analogue of Carleson's $\varepsilon2$ conjecture. Given two arbitrary disjoint open sets $\Omega+,\Omega-\subset \mathbb{R}{n+1}$, and $x\in\mathbb{R}{n+1}$, $r>0$, we denote $$\varepsilon_n(x,r) := \frac{1}{rn}\, \inf_{H+} \mathcal{H}n \left( ((\partial B(x,r)\cap H+) \setminus \Omega+) \cup ((\partial B(x,r)\cap H-) \setminus \Omega-)\right),$$ where the infimum is taken over all open affine half-spaces $H+$ such that $x \in \partial H+$ and we define $H-= \mathbb{R}{n+1} \setminus \overline {H{+}}$. Our first main result asserts that any Borel subset of $$\left{x\in\mathbb{R}{n+1}\, :\, \int_01 \varepsilon_n(x,r)2 \, \frac{dr}{r}<\infty\right}$$ is $n$-rectifiable. For our second main result we assume that $\Omega+, \Omega-$ are open and that $\Omega+\cup\Omega-$ satisfies the capacity density condition. For each $x \in \partial \Omega+ \cup \partial \Omega-$ and $r>0$, we denote by $\alpha\pm(x,r)$ the characteristic constant of the (spherical) open sets $\Omega\pm \cap \partial B(x,r)$. We show that, up to a set of $\mathcal{H}n$ measure zero, $x$ is a tangent point for both $\partial \Omega+$ and $ \partial \Omega-$ if and only if\begin{equation*} \int_0{1} \min(1,\alpha+(x,r) + \alpha-(x,r) -2) \frac{dr}{r} < \infty. \end{equation*} The first result is new even in the plane and the second one improves and extends to higher dimensions the $\varepsilon2$ conjecture of Carleson.

Summary

We haven't generated a summary for this paper yet.