Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grouping Capsules Based Different Types (1911.04820v1)

Published 12 Nov 2019 in cs.CV and cs.LG

Abstract: Capsule network was introduced as a new architecture of neural networks, it encoding features as capsules to overcome the lacking of equivariant in the convolutional neural networks. It uses dynamic routing algorithm to train parameters in different capsule layers, but the dynamic routing algorithm need to be improved. In this paper, we propose a novel capsule network architecture and discussed the effect of initialization method of the coupling coefficient $c_{ij}$ on the model. First, we analyze the rate of change of the initial value of $c_{ij}$ when the dynamic routing algorithm iterates. The larger the initial value of $c_{ij}$, the better effect of the model. Then, we proposed improvement that training different types of capsules by grouping capsules based different types. And this improvement can adjust the initial value of $c_{ij}$ to make it more suitable. We experimented with our improvements on some computer vision datasets and achieved better results than the original capsule network

Citations (1)

Summary

We haven't generated a summary for this paper yet.