Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention routing between capsules (1907.01750v4)

Published 3 Jul 2019 in cs.CV

Abstract: In this paper, we propose a new capsule network architecture called Attention Routing CapsuleNet (AR CapsNet). We replace the dynamic routing and squash activation function of the capsule network with dynamic routing (CapsuleNet) with the attention routing and capsule activation. The attention routing is a routing between capsules through an attention module. The attention routing is a fast forward-pass while keeping spatial information. On the other hand, the intuitive interpretation of the dynamic routing is finding a centroid of the prediction capsules. Thus, the squash activation function and its variant focus on preserving a vector orientation. However, the capsule activation focuses on performing a capsule-scale activation function. We evaluate our proposed model on the MNIST, affNIST, and CIFAR-10 classification tasks. The proposed model achieves higher accuracy with fewer parameters (x0.65 in the MNIST, x0.82 in the CIFAR-10) and less training time than CapsuleNet (x0.19 in the MNIST, x0.35 in the CIFAR-10). These results validate that designing a capsule-scale operation is a key factor to implement the capsule concept. Also, our experiment shows that our proposed model is transformation equivariant as CapsuleNet. As we perturb each element of the output capsule, the decoder attached to the output capsules shows global variations. Further experiments show that the difference in the capsule features caused by applying affine transformations on an input image is significantly aligned in one direction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jaewoong Choi (26 papers)
  2. Hyun Seo (2 papers)
  3. Suii Im (1 paper)
  4. Myungjoo Kang (45 papers)
Citations (69)

Summary

We haven't generated a summary for this paper yet.