Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mitigating Shear-dependent Object Detection Biases with Metacalibration (1911.02505v2)

Published 6 Nov 2019 in astro-ph.CO

Abstract: Metacalibration is a new technique for measuring weak gravitational lensing shear that is unbiased for isolated galaxy images. In this work we test metacalibration with overlapping, or ``blended'' galaxy images. Using standard metacalibration, we find a few percent shear measurement bias for galaxy densities relevant for current surveys, and that this bias increases with increasing galaxy number density. We show that this bias is not due to blending itself, but rather to shear-dependent object detection. If object detection is shear independent, no deblending of images is needed, in principle. We demonstrate that detection biases are accurately removed when including object detection in the metacalibration process, a technique we call metadetection. This process involves applying an artificial shear to images of small regions of sky and performing detection on the sheared images, as well as measurements that are used to calculate a shear response. We demonstrate that the method can accurately recover weak shear signals even in highly blended scenes. In the metacalibration process, the space between objects is sheared coherently, which does not perfectly match the real universe in which some, but not all, galaxy images are sheared coherently. We find that even for the worst case scenario, in which the space between objects is completely unsheared, the resulting shear bias is at most a few tenths of a percent for future surveys. We discuss additional technical challenges that must be met in order to implement metadetection for real surveys.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.