Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plankton: Scalable network configuration verification through model checking (1911.02128v1)

Published 5 Nov 2019 in cs.NI

Abstract: Network configuration verification enables operators to ensure that the network will behave as intended, prior to deployment of their configurations. Although techniques ranging from graph algorithms to SMT solvers have been proposed, scalable configuration verification with sufficient protocol support continues to be a challenge. In this paper, we show that by combining equivalence partitioning with explicit-state model checking, network configuration verification can be scaled significantly better than the state of the art, while still supporting a rich set of protocol features. We propose Plankton, which uses symbolic partitioning to manage large header spaces and efficient model checking to exhaustively explore protocol behavior. Thanks to a highly effective suite of optimizations including state hashing, partial order reduction, and policy-based pruning, Plankton successfully verifies policies in industrial-scale networks quickly and compactly, at times reaching a 10000$\times$ speedup compared to the state of the art.

Citations (83)

Summary

We haven't generated a summary for this paper yet.