Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the equivalence of all models for $(\infty,2)$-categories (1911.01905v3)

Published 5 Nov 2019 in math.AT and math.CT

Abstract: The goal of this paper is to provide the last equivalence needed in order to identify all known models for $(\infty,2)$-categories. We do this by showing that Verity's model of saturated $2$-trivial complicial sets is equivalent to Lurie's model of $\infty$-bicategories, which, in turn, has been shown to be equivalent to all other known models for $(\infty,2)$-categories. A key technical input is given by identifying the notion of $\infty$-bicategories with that of weak $\infty$-bicategories, a step which allows us to understand Lurie's model structure in terms of Cisinski--Olschok's theory. This description of $\infty$-bicategories, which may be of independent interest, is proved using tools coming from a new theory of outer (co)cartesian fibrations, further developed in a companion paper. In the last part of the paper we construct a homotopically fully faithful scaled simplicial nerve functor for $2$-categories, we give two equivalent descriptions of it, and we show that the homotopy $2$-category of an $\infty$-bicategory retains enough information to detect thin $2$-simplices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.