Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metrology for AI: From Benchmarks to Instruments (1911.01875v1)

Published 5 Nov 2019 in cs.AI

Abstract: In this paper we present the first steps towards hardening the science of measuring AI systems, by adopting metrology, the science of measurement and its application, and applying it to human (crowd) powered evaluations. We begin with the intuitive observation that evaluating the performance of an AI system is a form of measurement. In all other science and engineering disciplines, the devices used to measure are called instruments, and all measurements are recorded with respect to the characteristics of the instruments used. One does not report mass, speed, or length, for example, of a studied object without disclosing the precision (measurement variance) and resolution (smallest detectable change) of the instrument used. It is extremely common in the AI literature to compare the performance of two systems by using a crowd-sourced dataset as an instrument, but failing to report if the performance difference lies within the capability of that instrument to measure. To illustrate the adoption of metrology to benchmark datasets we use the word similarity benchmark WS353 and several previously published experiments that use it for evaluation.

Citations (29)

Summary

We haven't generated a summary for this paper yet.