Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detect Toxic Content to Improve Online Conversations (1911.01217v1)

Published 29 Oct 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Social media is filled with toxic content. The aim of this paper is to build a model that can detect insincere questions. We use the 'Quora Insincere Questions Classification' dataset for our analysis. The dataset is composed of sincere and insincere questions, with the majority of sincere questions. The dataset is processed and analyzed using Python and its libraries such as sklearn, numpy, pandas, keras etc. The dataset is converted to vector form using word embeddings such as GloVe, Wiki-news and TF-IDF. The imbalance in the dataset is handled by resampling techniques. We train and compare various machine learning and deep learning models to come up with the best results. Models discussed include SVM, Naive Bayes, GRU and LSTM.

Citations (6)

Summary

We haven't generated a summary for this paper yet.