Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tackling COVID-19 Infodemic using Deep Learning (2107.02012v1)

Published 1 Jul 2021 in cs.CL and cs.LG

Abstract: Humanity is battling one of the most deleterious virus in modern history, the COVID-19 pandemic, but along with the pandemic there's an infodemic permeating the pupil and society with misinformation which exacerbates the current malady. We try to detect and classify fake news on online media to detect fake information relating to COVID-19 and coronavirus. The dataset contained fake posts, articles and news gathered from fact checking websites like politifact whereas real tweets were taken from verified twitter handles. We incorporated multiple conventional classification techniques like Naive Bayes, KNN, Gradient Boost and Random Forest along with Deep learning approaches, specifically CNN, RNN, DNN and the ensemble model RMDL. We analyzed these approaches with two feature extraction techniques, TF-IDF and GloVe Word Embeddings which would provide deeper insights into the dataset containing COVID-19 info on online media.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Prathmesh Pathwar (1 paper)
  2. Simran Gill (1 paper)
Citations (7)