Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Very high resolution Airborne PolSAR Image Classification using Convolutional Neural Networks (1910.14578v2)

Published 31 Oct 2019 in cs.CV and cs.LG

Abstract: In this work, we exploit convolutional neural networks (CNNs) for the classification of very high resolution (VHR) polarimetric SAR (PolSAR) data. Due to the significant appearance of heterogeneous textures within these data, not only polarimetric features but also structural tensors are exploited to feed CNN models. For deep networks, we use the SegNet model for semantic segmentation, which corresponds to pixelwise classification in remote sensing. Our experiments on the airborne F-SAR data show that for VHR PolSAR images, SegNet could provide high accuracy for the classification task; and introducing structural tensors together with polarimetric features as inputs could help the network to focus more on geometrical information to significantly improve the classification performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.