Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SDF2Net: Shallow to Deep Feature Fusion Network for PolSAR Image Classification (2402.17672v1)

Published 27 Feb 2024 in cs.CV and eess.IV

Abstract: Polarimetric synthetic aperture radar (PolSAR) images encompass valuable information that can facilitate extensive land cover interpretation and generate diverse output products. Extracting meaningful features from PolSAR data poses challenges distinct from those encountered in optical imagery. Deep learning (DL) methods offer effective solutions for overcoming these challenges in PolSAR feature extraction. Convolutional neural networks (CNNs) play a crucial role in capturing PolSAR image characteristics by leveraging kernel capabilities to consider local information and the complex-valued nature of PolSAR data. In this study, a novel three-branch fusion of complex-valued CNN, named the Shallow to Deep Feature Fusion Network (SDF2Net), is proposed for PolSAR image classification. To validate the performance of the proposed method, classification results are compared against multiple state-of-the-art approaches using the airborne synthetic aperture radar (AIRSAR) datasets of Flevoland and San Francisco, as well as the ESAR Oberpfaffenhofen dataset. The results indicate that the proposed approach demonstrates improvements in overallaccuracy, with a 1.3% and 0.8% enhancement for the AIRSAR datasets and a 0.5% improvement for the ESAR dataset. Analyses conducted on the Flevoland data underscore the effectiveness of the SDF2Net model, revealing a promising overall accuracy of 96.01% even with only a 1% sampling ratio.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Q. Yin, W. Hong, F. Zhang, and E. Pottier, “Optimal combination of polarimetric features for vegetation classification in polsar image,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 10, pp. 3919–3931, 2019.
  2. W. Zhang, B. Hu, and G. S. Brown, “Automatic surface water mapping using polarimetric sar data for long-term change detection,” Water, vol. 12, no. 3, p. 872, 2020.
  3. D. Xiang, T. Tang, Y. Ban, and Y. Su, “Man-made target detection from polarimetric sar data via nonstationarity and asymmetry,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 4, pp. 1459–1469, 2016.
  4. R. Shang, J. Wang, L. Jiao, X. Yang, and Y. Li, “Spatial feature-based convolutional neural network for polsar image classification,” Applied Soft Computing, vol. 123, p. 108922, 2022.
  5. Y. Ren, W. Jiang, and Y. Liu, “A new architecture of a complex-valued convolutional neural network for polsar image classification,” Remote Sensing, vol. 15, no. 19, p. 4801, 2023.
  6. B. Brisco, M. Mahdianpari, and F. Mohammadimanesh, “Hybrid compact polarimetric sar for environmental monitoring with the radarsat constellation mission,” Remote Sensing, vol. 12, no. 20, p. 3283, 2020.
  7. Y. Yamaguchi, “Disaster monitoring by fully polarimetric sar data acquired with alos-palsar,” Proceedings of the IEEE, vol. 100, no. 10, pp. 2851–2860, 2012.
  8. B. Hou, J. Guan, Q. Wu, and L. Jiao, “Semisupervised classification of polsar image incorporating labels’ semantic priors,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 10, pp. 1737–1741, 2019.
  9. A. Lupidi, C. Greiff, S. Brüggenwirth, M. Brandfass, and M. Martorella, “Polarimetric radar technology for european defence superiority-the polrad project,” in 2020 21st International Radar Symposium (IRS).   IEEE, 2020, pp. 6–10.
  10. D. Mandal and Y. Rao, “Sasya: An integrated framework for crop biophysical parameter retrieval and within-season crop yield prediction with sar remote sensing data,” Remote Sensing Applications: Society and Environment, vol. 20, p. 100366, 2020.
  11. C. Silva-Perez, A. Marino, J. M. Lopez-Sanchez, and I. Cameron, “Multitemporal polarimetric sar change detection for crop monitoring and crop type classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 12 361–12 374, 2021.
  12. M. Datcu, Z. Huang, A. Anghel, J. Zhao, and R. Cacoveanu, “Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar,” IEEE Geoscience and Remote Sensing Magazine, vol. 11, no. 1, pp. 8–25, 2023.
  13. Z. Yang, L. Fang, B. Shen, and T. Liu, “Polsar ship detection based on azimuth sublook polarimetric covariance matrix,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 8506–8518, 2022.
  14. E. Krogager, “New decomposition of the radar target scattering matrix,” Electronics letters, vol. 18, no. 26, pp. 1525–1527, 1990.
  15. A. Freeman and S. L. Durden, “A three-component scattering model for polarimetric sar data,” IEEE transactions on geoscience and remote sensing, vol. 36, no. 3, pp. 963–973, 1998.
  16. Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, “Four-component scattering model for polarimetric sar image decomposition,” IEEE Transactions on geoscience and remote sensing, vol. 43, no. 8, pp. 1699–1706, 2005.
  17. S. R. Cloude and E. Pottier, “A review of target decomposition theorems in radar polarimetry,” IEEE transactions on geoscience and remote sensing, vol. 34, no. 2, pp. 498–518, 1996.
  18. J. Qin, Z. Liu, L. Ran, R. Xie, J. Tang, and Z. Guo, “A target sar image expansion method based on conditional wasserstein deep convolutional gan for automatic target recognition,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 7153–7170, 2022.
  19. Z. Qi, A. G.-O. Yeh, X. Li, and Z. Lin, “A novel algorithm for land use and land cover classification using radarsat-2 polarimetric sar data,” Remote Sensing of Environment, vol. 118, pp. 21–39, 2012.
  20. H. Wang, F. Xu, and Y.-Q. Jin, “A review of polsar image classification: From polarimetry to deep learning,” in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2019, pp. 3189–3192.
  21. H. Parikh, S. Patel, and V. Patel, “Classification of sar and polsar images using deep learning: A review,” International Journal of Image and Data Fusion, vol. 11, no. 1, pp. 1–32, 2020.
  22. Y. Zhou, H. Wang, F. Xu, and Y.-Q. Jin, “Polarimetric sar image classification using deep convolutional neural networks,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 12, pp. 1935–1939, 2016.
  23. S.-W. Chen and C.-S. Tao, “Polsar image classification using polarimetric-feature-driven deep convolutional neural network,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 4, pp. 627–631, 2018.
  24. A. Radman, M. Mahdianpari, B. Brisco, B. Salehi, and F. Mohammadimanesh, “Dual-branch fusion of convolutional neural network and graph convolutional network for polsar image classification,” Remote Sensing, vol. 15, no. 1, p. 75, 2022.
  25. H. Dong, L. Zhang, and B. Zou, “Polsar image classification with lightweight 3d convolutional networks,” Remote Sensing, vol. 12, no. 3, p. 396, 2020.
  26. J. Barrachina, C. Ren, G. Vieillard, C. Morisseau, and J.-P. Ovarlez, “Real-and complex-valued neural networks for sar image segmentation through different polarimetric representations,” in 2022 IEEE International Conference on Image Processing (ICIP).   IEEE, 2022, pp. 1456–1460.
  27. R. M. Asiyabi, M. Datcu, H. Nies, and A. Anghel, “Complex-valued vs. real-valued convolutional neural network for polsar data classification,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2022, pp. 421–424.
  28. R. Hänsch and O. Hellwich, “Complex-valued convolutional neural networks for object detection in polsar data,” in 8th European Conference on Synthetic Aperture Radar.   VDE, 2010, pp. 1–4.
  29. Z. Fang, G. Zhang, Q. Dai, B. Xue, and P. Wang, “Hybrid attention-based encoder–decoder fully convolutional network for polsar image classification,” Remote Sensing, vol. 15, no. 2, p. 526, 2023.
  30. L. Zhang, Z. Chen, B. Zou, and Y. Gao, “Polarimetric sar terrain classification using 3d convolutional neural network,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2018, pp. 4551–4554.
  31. H. Dong, L. Zhang, D. Lu, and B. Zou, “Attention-based polarimetric feature selection convolutional network for polsar image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2020.
  32. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
  33. J. Zhang, P. Ma, T. Jiang, X. Zhao, W. Tan, J. Zhang, S. Zou, X. Huang, M. Grzegorzek, and C. Li, “Sem-rcnn: a squeeze-and-excitation-based mask region convolutional neural network for multi-class environmental microorganism detection,” Applied Sciences, vol. 12, no. 19, p. 9902, 2022.
  34. J. Ni, D. Xiang, Z. Lin, C. López-Martínez, W. Hu, and F. Zhang, “Dnn-based polsar image classification on noisy labels,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3697–3713, 2022.
  35. Y. Cao, Y. Wu, M. Li, W. Liang, and P. Zhang, “Polsar image classification using a superpixel-based composite kernel and elastic net,” Remote Sensing, vol. 13, no. 3, p. 380, 2021.
  36. X. Liu, L. Jiao, F. Liu, D. Zhang, and X. Tang, “Polsf: Polsar image datasets on san francisco,” in International Conference on Intelligence Science.   Springer, 2022, pp. 214–219.
  37. S. Hochstuhl, N. Pfeffer, A. Thiele, S. Hinz, J. Amao-Oliva, R. Scheiber, A. Reigber, and H. Dirks, “Pol-insar-island-a benchmark dataset for multi-frequency pol-insar data land cover classification,” ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 10, p. 100047, 2023.
  38. C. Lardeux, P.-L. Frison, C. Tison, J.-C. Souyris, B. Stoll, B. Fruneau, and J.-P. Rudant, “Support vector machine for multifrequency sar polarimetric data classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 12, pp. 4143–4152, 2009.
  39. Z. Zhang, H. Wang, F. Xu, and Y.-Q. Jin, “Complex-valued convolutional neural network and its application in polarimetric sar image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 12, pp. 7177–7188, 2017.
  40. X. Tan, M. Li, P. Zhang, Y. Wu, and W. Song, “Complex-valued 3-d convolutional neural network for polsar image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 6, pp. 1022–1026, 2019.
  41. A. Jamali, M. Mahdianpari, F. Mohammadimanesh, A. Bhattacharya, and S. Homayouni, “Polsar image classification based on deep convolutional neural networks using wavelet transformation,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  42. M. Q. Alkhatib, M. Al-Saad, N. Aburaed, M. S. Zitouni, and H. Al-Ahmad, “Polsar image classification using attention based shallow to deep convolutional neural network,” in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2023, pp. 8034–8037.
  43. M. Q. Alkhatib and M. Velez-Reyes, “Improved spatial-spectral superpixel hyperspectral unmixing,” Remote Sensing, vol. 11, no. 20, p. 2374, 2019.

Summary

We haven't generated a summary for this paper yet.