Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels (1910.13781v1)

Published 30 Oct 2019 in math.QA, math-ph, math.MP, and math.RT

Abstract: We study the representation theory of the Bershadsky-Polyakov algebra $\mathcal W_k = \mathcal{W}k(sl_3,f{\theta})$. In particular, Zhu algebra of $\mathcal W_k$ is isomorphic to a certain quotient of the Smith algebra, after changing the Virasoro vector. We classify all modules in the category $\mathcal{O}$ for the Bershadsky-Polyakov algebra $\mathcal W_k$ when $k=-5/3, -9/4, -1,0$. In the case $k=0$ we show that the Zhu algebra $A(\mathcal W_k)$ has $2$--dimensional indecomposable modules.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.