Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best Practices for Convolutional Neural Networks Applied to Object Recognition in Images (1910.13029v1)

Published 29 Oct 2019 in cs.CV, cs.LG, and eess.IV

Abstract: This research project studies the impact of convolutional neural networks (CNN) in image classification tasks. We explore different architectures and training configurations with the use of ReLUs, Nesterov's accelerated gradient, dropout and maxout networks. We work with the CIFAR-10 dataset as part of a Kaggle competition to identify objects in images. Initial results show that CNNs outperform our baseline by acting as invariant feature detectors. Comparisons between different preprocessing procedures show better results for global contrast normalization and ZCA whitening. ReLUs are much faster than tanh units and outperform sigmoids. We provide extensive details about our training hyperparameters, providing intuition for their selection that could help enhance learning in similar situations. We design 4 models of convolutional neural networks that explore characteristics such as depth, number of feature maps, size and overlap of kernels, pooling regions, and different subsampling techniques. Results favor models of moderate depth that use an extensive number of parameters in both convolutional and dense layers. Maxout networks are able to outperform rectifiers on some models but introduce too much noise as the complexity of the fully-connected layers increases. The final discussion explains our results and provides additional techniques that could improve performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.