Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature Enhancement with Deep Feature Losses for Speaker Verification (1910.11905v2)

Published 25 Oct 2019 in eess.AS and cs.SD

Abstract: Speaker Verification still suffers from the challenge of generalization to novel adverse environments. We leverage on the recent advancements made by deep learning based speech enhancement and propose a feature-domain supervised denoising based solution. We propose to use Deep Feature Loss which optimizes the enhancement network in the hidden activation space of a pre-trained auxiliary speaker embedding network. We experimentally verify the approach on simulated and real data. A simulated testing setup is created using various noise types at different SNR levels. For evaluation on real data, we choose BabyTrain corpus which consists of children recordings in uncontrolled environments. We observe consistent gains in every condition over the state-of-the-art augmented Factorized-TDNN x-vector system. On BabyTrain corpus, we observe relative gains of 10.38% and 12.40% in minDCF and EER respectively.

Citations (29)

Summary

We haven't generated a summary for this paper yet.