Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Channel Far Field Feature Enhancement For Speaker Verification In The Wild (2005.08331v1)

Published 17 May 2020 in eess.AS and cs.SD

Abstract: We investigated an enhancement and a domain adaptation approach to make speaker verification systems robust to perturbations of far-field speech. In the enhancement approach, using paired (parallel) reverberant-clean speech, we trained a supervised Generative Adversarial Network (GAN) along with a feature mapping loss. For the domain adaptation approach, we trained a Cycle Consistent Generative Adversarial Network (CycleGAN), which maps features from far-field domain to the speaker embedding training domain. This was trained on unpaired data in an unsupervised manner. Both networks, termed Supervised Enhancement Network (SEN) and Domain Adaptation Network (DAN) respectively, were trained with multi-task objectives in (filter-bank) feature domain. On a simulated test setup, we first note the benefit of using feature mapping (FM) loss along with adversarial loss in SEN. Then, we tested both supervised and unsupervised approaches on several real noisy datasets. We observed relative improvements ranging from 2% to 31% in terms of DCF. Using three training schemes, we also establish the effectiveness of the novel DAN approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.