Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Multilingual Syntactic Sentence Representations (1910.11768v1)

Published 25 Oct 2019 in cs.CL, cs.LG, and eess.AS

Abstract: We study methods for learning sentence embeddings with syntactic structure. We focus on methods of learning syntactic sentence-embeddings by using a multilingual parallel-corpus augmented by Universal Parts-of-Speech tags. We evaluate the quality of the learned embeddings by examining sentence-level nearest neighbours and functional dissimilarity in the embedding space. We also evaluate the ability of the method to learn syntactic sentence-embeddings for low-resource languages and demonstrate strong evidence for transfer learning. Our results show that syntactic sentence-embeddings can be learned while using less training data, fewer model parameters, and resulting in better evaluation metrics than state-of-the-art LLMs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.