Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ClsGAN: Selective Attribute Editing Model Based On Classification Adversarial Network (1910.11764v2)

Published 25 Oct 2019 in cs.CV and eess.IV

Abstract: Attribution editing has achieved remarkable progress in recent years owing to the encoder-decoder structure and generative adversarial network (GAN). However, it remains challenging in generating high-quality images with accurate attribute transformation. Attacking these problems, the work proposes a novel selective attribute editing model based on classification adversarial network (referred to as ClsGAN) that shows good balance between attribute transfer accuracy and photo-realistic images. Considering that the editing images are prone to be affected by original attribute due to skip-connection in encoder-decoder structure, an upper convolution residual network (referred to as Tr-resnet) is presented to selectively extract information from the source image and target label. In addition, to further improve the transfer accuracy of generated images, an attribute adversarial classifier (referred to as Atta-cls) is introduced to guide the generator from the perspective of attribute through learning the defects of attribute transfer images. Experimental results on CelebA demonstrate that our ClsGAN performs favorably against state-of-the-art approaches in image quality and transfer accuracy. Moreover, ablation studies are also designed to verify the great performance of Tr-resnet and Atta-cls.

Citations (3)

Summary

We haven't generated a summary for this paper yet.