Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retrieve and Refine: Exemplar-based Neural Comment Generation (1910.10419v1)

Published 23 Oct 2019 in cs.SE

Abstract: Code comment generation is a crucial task in the field of automatic software development. Most previous neural comment generation systems used an encoder-decoder neural network and encoded only information from source code as input. Software reuse is common in software development. However, this feature has not been introduced to existing systems. Inspired by the traditional IR-based approaches, we propose to use the existing comments of similar source code as exemplars to guide the comment generation process. Based on an open source search engine, we first retrieve a similar code and treat its comment as an exemplar. Then we applied a seq2seq neural network to conduct an exemplar-based comment generation. We evaluate our approach on a large-scale Java corpus, and experimental results demonstrate that our model significantly outperforms the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Bolin Wei (5 papers)
Citations (109)

Summary

We haven't generated a summary for this paper yet.