Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Convolutional Neural Network for Language-Agnostic Source Code Summarization (1904.00805v1)

Published 29 Mar 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Descriptive comments play a crucial role in the software engineering process. They decrease development time, enable better bug detection, and facilitate the reuse of previously written code. However, comments are commonly the last of a software developer's priorities and are thus either insufficient or missing entirely. Automatic source code summarization may therefore have the ability to significantly improve the software development process. We introduce a novel encoder-decoder model that summarizes source code, effectively writing a comment to describe the code's functionality. We make two primary innovations beyond current source code summarization models. First, our encoder is fully language-agnostic and requires no complex input preprocessing. Second, our decoder has an open vocabulary, enabling it to predict any word, even ones not seen in training. We demonstrate results comparable to state-of-the-art methods on a single-language data set and provide the first results on a data set consisting of multiple programming languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jessica Moore (4 papers)
  2. Ben Gelman (5 papers)
  3. David Slater (9 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.