Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Objective Bayesian Analysis of a Cokriging Model for Hierarchical Multifidelity Codes (1910.10225v4)

Published 22 Oct 2019 in math.ST, stat.CO, and stat.TH

Abstract: Autoregressive cokriging models have been widely used to emulate multiple computer models with different levels of fidelity. The dependence structures are modeled via Gaussian processes at each level of fidelity, where covariance structures are often parameterized up to a few parameters. The predictive distributions typically require intensive Monte Carlo approximations in previous works. This article derives new closed-form formulas to compute the means and variances of predictive distributions in autoregressive cokriging models that only depend on correlation parameters. For parameter estimation, we consider objective Bayesian analysis of such autoregressive cokriging models. We show that common choices of prior distributions, such as the constant prior and inverse correlation prior, typically lead to improper posteriors. We also develop several objective priors such as the independent reference prior and the independent Jeffreys prior that are shown to yield proper posterior distributions. This development is illustrated with a borehole function in an eight-dimensional input space and applied to an engineering application in a six-dimensional input space.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube