Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 453 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

On Predictive Information in RNNs (1910.09578v2)

Published 21 Oct 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: Certain biological neurons demonstrate a remarkable capability to optimally compress the history of sensory inputs while being maximally informative about the future. In this work, we investigate if the same can be said of artificial neurons in recurrent neural networks (RNNs) trained with maximum likelihood. Empirically, we find that RNNs are suboptimal in the information plane. Instead of optimally compressing past information, they extract additional information that is not relevant for predicting the future. We show that constraining past information by injecting noise into the hidden state can improve RNNs in several ways: optimality in the predictive information plane, sample quality, heldout likelihood, and downstream classification performance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.