Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the power of axial tests of uniformity on spheres (1910.09391v1)

Published 21 Oct 2019 in math.ST and stat.TH

Abstract: Testing uniformity on the $p$-dimensional unit sphere is arguably the most fundamental problem in directional statistics. In this paper, we consider this problem in the framework of axial data, that is, under the assumption that the $n$ observations at hand are randomly drawn from a distribution that charges antipodal regions equally. More precisely, we focus on axial, rotationally symmetric, alternatives and first address the problem under which the direction $\theta$ of the corresponding symmetry axis is specified. In this setup, we obtain Le Cam optimal tests of uniformity, that are based on the sample covariance matrix (unlike their non-axial analogs, that are based on the sample average). For the more important unspecified-$\theta$ problem, some classical tests are available in the literature, but virtually nothing is known on their non-null behavior. We therefore study the non-null behavior of the celebrated Bingham test and of other tests that exploit the single-spiked nature of the considered alternatives. We perform Monte Carlo exercises to investigate the finite-sample behavior of our tests and to show their agreement with our asymptotic results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.