Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementation of a modified Nesterov's Accelerated quasi-Newton Method on Tensorflow (1910.09158v1)

Published 21 Oct 2019 in cs.LG and stat.ML

Abstract: Recent studies incorporate Nesterov's accelerated gradient method for the acceleration of gradient based training. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to drastically improve the convergence speed compared to the conventional quasi-Newton method. This paper implements NAQ for non-convex optimization on Tensorflow. Two modifications have been proposed to the original NAQ algorithm to ensure global convergence and eliminate linesearch. The performance of the proposed algorithm - mNAQ is evaluated on standard non-convex function approximation benchmark problems and microwave circuit modelling problems. The results show that the improved algorithm converges better and faster compared to first order optimizers such as AdaGrad, RMSProp, Adam, and the second order methods such as the quasi-Newton method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.