Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Variance Reduced Nesterov's Accelerated Quasi-Newton Method (1910.07939v1)

Published 17 Oct 2019 in cs.LG and stat.ML

Abstract: Recently algorithms incorporating second order curvature information have become popular in training neural networks. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to effectively accelerate the BFGS quasi-Newton method by incorporating the momentum term and Nesterov's accelerated gradient vector. A stochastic version of NAQ method was proposed for training of large-scale problems. However, this method incurs high stochastic variance noise. This paper proposes a stochastic variance reduced Nesterov's Accelerated Quasi-Newton method in full (SVR-NAQ) and limited (SVRLNAQ) memory forms. The performance of the proposed method is evaluated in Tensorflow on four benchmark problems - two regression and two classification problems respectively. The results show improved performance compared to conventional methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.