Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An approach to the distributionally robust shortest path problem (1910.08744v5)

Published 19 Oct 2019 in math.OC and cs.GT

Abstract: In this study we consider the shortest path problem, where the arc costs are subject to distributional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected loss over an ambiguity set (or a family) of candidate distributions that are consistent with the decision-maker's initial information. The ambiguity set is formed by all distributions that satisfy prescribed linear first-order moment constraints with respect to subsets of arcs and individual probability constraints with respect to particular arcs. Under some additional assumptions the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to be $NP$-hard, whereas the problem without the first-order moment constraints is proved to be polynomially solvable. We perform numerical experiments to illustrate the advantages of the considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved effectively using off-the-shelf solvers.

Citations (11)

Summary

We haven't generated a summary for this paper yet.