Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the multi-stage shortest path problem under distributional uncertainty (2205.09200v2)

Published 18 May 2022 in math.OC and cs.GT

Abstract: In this paper we consider an ambiguity-averse multi-stage network game between a user and an attacker. The arc costs are assumed to be random variables that satisfy prescribed first-order moment constraints for some subsets of arcs and individual probability constraints for some particular arcs. The user aims at minimizing its cumulative expected loss by traversing between two fixed nodes in the network, while the attacker's objective is to maximize the user's expected loss by selecting a distribution of arc costs from the family of admissible distributions. In contrast to most of the related studies, both the user and the attacker can dynamically adjust their decisions at particular nodes of the user's path. By observing the user's decisions, the attacker may reveal some additional distributional information associated with the arcs emanated from the current user's position. It is shown that the resulting multi-stage distributionally robust shortest path problem (DRSPP) admits a linear mixed-integer programming reformulation (MIP). In particular, we distinguish between acyclic and general graphs by introducing different forms of non-anticipativity constraints. Finally, we perform a numerical study, where the quality of adaptive decisions and computational tractability of the proposed MIP reformulation are explored with respect to several classes of synthetic network~instances.

Citations (1)

Summary

We haven't generated a summary for this paper yet.