Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised 3D Shape and Viewpoint Estimation from Single Images for Robotics (1910.07948v1)

Published 17 Oct 2019 in cs.RO, cs.CV, cs.LG, and eess.IV

Abstract: We present a convolutional neural network for joint 3D shape prediction and viewpoint estimation from a single input image. During training, our network gets the learning signal from a silhouette of an object in the input image - a form of self-supervision. It does not require ground truth data for 3D shapes and the viewpoints. Because it relies on such a weak form of supervision, our approach can easily be applied to real-world data. We demonstrate that our method produces reasonable qualitative and quantitative results on natural images for both shape estimation and viewpoint prediction. Unlike previous approaches, our method does not require multiple views of the same object instance in the dataset, which significantly expands the applicability in practical robotics scenarios. We showcase it by using the hallucinated shapes to improve the performance on the task of grasping real-world objects both in simulation and with a PR2 robot.

Citations (21)

Summary

We haven't generated a summary for this paper yet.