Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and Multiplicity of positive solutions of certain nonlocal scalar field equations (1910.07919v1)

Published 17 Oct 2019 in math.AP

Abstract: We study existence and multiplicity of positive solutions of the following class of nonlocal scalar field equations: \begin{equation} \tag{$\mathcal{P}$} \left{\begin{aligned} (-\Delta)s u + u &= a(x) |u|{p-1}u+f(x)\;\;\text{in}\;\mathbb{R}{N}, u &\in H{s}{(\mathbb{R}{N})} \end{aligned} \right. \end{equation} where $s \in (0,1)$, $N>2s$, $1<p<2_s*-1:=\frac{N+2s}{N-2s}$, $0< a\in L\infty(\mathbb{R}N)$ and $f\in H{-s}(\mathbb{R}N)$ is a nonnegative functional i.e., ${\langle}f,u{\rangle} \geq 0$ whenever $u$ is a nonnegative function in $Hs(\mathbb{R}N)$. We prove existence of a positive solution when $f\equiv 0$ under certain asymptotic behavior on the function $a.$ Moreover, when $a(x)\geq 1$, $a(x)\to 1$ as $|x|\to\infty$ and $|f|{H{-s}(\mathbb{R}N)}$ is small enough (but $f\not\equiv 0$), then we show that the above equation admits at least two positive solutions. Finally, we establish existence of three positive solutions to the above equation, under the condition that $a(x)\leq 1$ with $a(x)\to 1$ as $|x|\to\infty$ and $|f|{H{-s}(\mathbb{R}N)}$ is small enough (but $f\not\equiv 0$).

Summary

We haven't generated a summary for this paper yet.