Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the multiplicity and concentration of positive solutions for a $p$-fractional Choquard equation in $\mathbb{R}^{N}$ (1810.03171v3)

Published 7 Oct 2018 in math.AP

Abstract: In this paper we deal with the following fractional Choquard equation \begin{equation*} \left{ \begin{array}{ll} \varepsilon{sp}(-\Delta){s}_{p} u + V(x)|u|{p-2}u = \varepsilon{\mu-N}\left(\frac{1}{|x|{\mu}}*F(u)\right)f(u) \mbox{ in } \mathbb{R}{N},\ u\in W{s,p}(\R{N}), \quad u>0 \mbox{ in } \mathbb{R}{N}, \end{array} \right. \end{equation*} where $\varepsilon>0$ is a small parameter, $s\in (0, 1)$, $p\in (1, \infty)$, $N>sp$, $(-\Delta){s}_{p}$ is the fractional $p$-Laplacian, $V$ is a positive continuous potential, $0<\mu<sp$, and $f$ is a continuous superlinear function with subcritical growth. Using minimax arguments and the Ljusternik-Schnirelmann category theory, we obtain the existence, multiplicity and concentration of positive solutions for $\varepsilon\>0$ small enough.

Summary

We haven't generated a summary for this paper yet.