Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Wasserstein GANs for MR Imaging: from Paired to Unpaired Training (1910.07048v3)

Published 15 Oct 2019 in eess.IV and cs.CV

Abstract: Lack of ground-truth MR images impedes the common supervised training of neural networks for image reconstruction. To cope with this challenge, this paper leverages unpaired adversarial training for reconstruction networks, where the inputs are undersampled k-space and naively reconstructed images from one dataset, and the labels are high-quality images from another dataset. The reconstruction networks consist of a generator which suppresses the input image artifacts, and a discriminator using a pool of (unpaired) labels to adjust the reconstruction quality. The generator is an unrolled neural network -- a cascade of convolutional and data consistency layers. The discriminator is also a multilayer CNN that plays the role of a critic scoring the quality of reconstructed images based on the Wasserstein distance. Our experiments with knee MRI datasets demonstrate that the proposed unpaired training enables diagnostic-quality reconstruction when high-quality image labels are not available for the input types of interest, or when the amount of labels is small. In addition, our adversarial training scheme can achieve better image quality (as rated by expert radiologists) compared with the paired training schemes with pixel-wise loss.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube