Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Systematic Constructions of Fracton Theories (1910.06336v3)

Published 14 Oct 2019 in cond-mat.str-el, hep-lat, and hep-th

Abstract: Fracton theories possess exponentially degenerate ground states, excitations with restricted mobility, and nontopological higher-form symmetries. This paper shows that such theories can be defined on arbitrary spatial lattices in three dimensions. The key element of this construction is a generalization of higher-form gauge theories to so-called $\mathfrak{F}_p$ gauge theories, in which gauge transformations of rank-$k$ fields are specified by rank-$(k - p)$ gauge parameters. The $\mathbb{Z}_2$ rank-two theory of type $\mathfrak{F}_2$, placed on a cubic lattice and coupled to scalar matter, is shown to have a topological phase exactly dual to the well-known X-cube model. Generalizations of this example yield novel fracton theories. In the continuum, the $\mathrm{U}(1)$ rank-two theory of type $\mathfrak{F}_2$ is shown to have a perturbatively gapless fracton regime that cannot be consistently interpreted as a tensor gauge theory of any kind. The compact scalar fields that naturally couple to this $\mathfrak{F}_2$ theory also show gapless fracton behavior; on a cubic lattice they have a conserved $\mathrm{U}(1)$ charge and dipole moment, but these particular charges are not necessarily conserved on more general lattices. The construction straightforwardly generalizes to $\mathfrak{F}_2$ theories of nonabelian rank-two gauge fields, giving first examples of pure nonabelian higher-rank theories.

Citations (19)

Summary

We haven't generated a summary for this paper yet.