Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regeneration-enriched Markov processes with application to Monte Carlo (1910.05037v3)

Published 11 Oct 2019 in math.PR and stat.ME

Abstract: We study a class of Markov processes that combine local dynamics, arising from a fixed Markov process, with regenerations arising at a state-dependent rate. We give conditions under which such processes possess a given target distribution as their invariant measures, thus making them amenable for use within Monte Carlo methodologies. Since the regeneration mechanism can compensate the choice of local dynamics, while retaining the same invariant distribution, great flexibility can be achieved in selecting local dynamics, and the mathematical analysis is simplified. We give straightforward conditions for the process to possess a central limit theorem, and additional conditions for uniform ergodicity and for a coupling from the past construction to hold, enabling exact sampling from the invariant distribution. We further consider and analyse a natural approximation of the process which may arise in the practical simulation of some classes of continuous-time dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.