Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecast Aggregation via Peer Prediction (1910.03779v8)

Published 9 Oct 2019 in stat.ME, cs.HC, cs.LG, and cs.MA

Abstract: Crowdsourcing enables the solicitation of forecasts on a variety of prediction tasks from distributed groups of people. How to aggregate the solicited forecasts, which may vary in quality, into an accurate final prediction remains a challenging yet critical question. Studies have found that weighing expert forecasts more in aggregation can improve the accuracy of the aggregated prediction. However, this approach usually requires access to the historical performance data of the forecasters, which are often not available. In this paper, we study the problem of aggregating forecasts without having historical performance data. We propose using peer prediction methods, a family of mechanisms initially designed to truthfully elicit private information in the absence of ground truth verification, to assess the expertise of forecasters, and then using this assessment to improve forecast aggregation. We evaluate our peer-prediction-aided aggregators on a diverse collection of 14 human forecast datasets. Compared with a variety of existing aggregators, our aggregators achieve a significant and consistent improvement on aggregation accuracy measured by the Brier score and the log score. Our results reveal the effectiveness of identifying experts to improve aggregation even without historical data.

Citations (16)

Summary

We haven't generated a summary for this paper yet.