Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning of Optimal Forecast Aggregation in Partial Evidence Environments (1802.07107v1)

Published 20 Feb 2018 in cs.LG and stat.ML

Abstract: We consider the forecast aggregation problem in repeated settings, where the forecasts are done on a binary event. At each period multiple experts provide forecasts about an event. The goal of the aggregator is to aggregate those forecasts into a subjective accurate forecast. We assume that experts are Bayesian; namely they share a common prior, each expert is exposed to some evidence, and each expert applies Bayes rule to deduce his forecast. The aggregator is ignorant with respect to the information structure (i.e., distribution over evidence) according to which experts make their prediction. The aggregator observes the experts' forecasts only. At the end of each period the actual state is realized. We focus on the question whether the aggregator can learn to aggregate optimally the forecasts of the experts, where the optimal aggregation is the Bayesian aggregation that takes into account all the information (evidence) in the system. We consider the class of partial evidence information structures, where each expert is exposed to a different subset of conditionally independent signals. Our main results are positive; We show that optimal aggregation can be learned in polynomial time in a quite wide range of instances of the partial evidence environments. We provide a tight characterization of the instances where learning is possible and impossible.

Citations (7)

Summary

We haven't generated a summary for this paper yet.