Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

On a Tauberian Theorem of Ingham and Euler-Maclaurin Summation (1910.03036v3)

Published 7 Oct 2019 in math.NT and math.CO

Abstract: We discuss two theorems in analytic number theory and combinatory analysis that have seen increased use in recent years. A corollary to a Tauberian theorem of Ingham allows one to quickly prove asymptotic formulas for arithmetic sequences, so long as the corresponding generating function exhibits exponential growth of a certain form near its radius of convergence. Two common methods for proving the required analytic behavior are modular transformations and Euler-Maclaurin summation. However, these results are sometimes stated without certain technical conditions that are necessary for the complex analytic techniques that appear in Ingham's proof. We carefully examine the precise statements and proofs of these results, and find that in practice, the technical conditions are satisfied for those cases appearing in recent applications. We also generalize the classical approach of Euler-Maclaurin summation in order to prove asymptotic expansions for series with complex values, simple poles, or multi-dimensional summation indices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.